
StoryTime

Seth Summersett

Willi Ballenthin

Graph the Planet 2020

Seth Summersett

• Developer
• Reverse Engineer
• Data
• Mgmt

@williballenthin

• Reverse Engineer
• Forensics
• Malware

goals of an intrusion investigation

• determine earliest and most recent dates of compromise

• enumerate methods of access to environment, including:
• initial compromise

• persistent malware

• methods of lateral movement

• scope the compromise
• identify compromised systems

• describe data exposure

• attribute activities to threat groups

phases of intrusion investigation

• there are two aspects of “doing forensics”:
• artifact identification

• interpretation

• artifact identification: given all collected evidence, which artifacts are
related to malicious activity?

• interpretation: given all identified artifacts, demonstrate that
evidence backs up answers to the goals of intrusion investigation.

one task: classify artifacts into buckets

• goal: take a boatload of artifacts and decide if they are relevant to the
intrusion investigation.

• buckets:
• relevant: attacker actions created or changed the artifact.

malware payload. persistence key. backdoor file creation timestamp.

• not relevant: legitimate user actions created or changed the artifact.

os installation date. facebook logon. minesweeper high score.

example

😈
😈

😈
😈

?

example

?

is webcheck.dll related to the intrusion?

you might do the following:

• lookup md5 hash of webcheck.dll on file system against VirusTotal.

• find other processes that have loaded webcheck.dll.

• timeline load of webcheck.dll against creation timestamps on file system.

• enumerate registry keys that point to webcheck.dll.

• consider files that exist in the same directory as webcheck.dll.

is webcheck.dll related to the intrusion?

how would you do the following?

• lookup md5 hash of webcheck.dll on file system against VirusTotal.

• find other processes that have loaded webcheck.dll.

• timeline load of webcheck.dll against creation timestamps on file system.

• enumerate registry keys that point to webcheck.dll.

• consider files that exist in the same directory as webcheck.dll.

our primary investigative tools do not
help us easily classify artifacts.

thesis:

today, we manage alerts largely in a vacuum as a single event in time

alert validation is a time-consuming process to collect and contextualize metadata

why?

• existing classification tools are typically low dimensional.
• data is organized into lists or tables of things.

• one table per artifact type.

• links among tables are rare. (lots of development complexity here.)

• meaning:
• artifacts must be inspected in a vacuum, or manual joining required.

• they usually cannot provide the context we need to make a decision.

when tools produce independent tables…

to correlate, the analyst must manually do the “join”.

eg. “match the path of the dll in the process listing to the path in the file listing
to determine the md5sum”.

pid process dll

124 explorer.exe kernel32.dll

124 explorer.exe advapi32.dll

124 explorer.exe webclient.dll

path created md5

C:/windows/temp/1.txt 2016-12-10 789abc…

C:/windows/system32/webclient.dll 2017-01-10 d1e2f3…

C:/users/user/Desktop/a.exe 2016-12-11 4a5d6c…

table 1: volatility loaded modules table 2: sleuthkit file listing

manual joining is the worst!

• slow

• tedious

• error-prone

• not fun!

manual joining is the worst!

• slow

• tedious

• error-prone

• not fun!

→ this discourages the analyst from asking the questions they mean
• maybe there is patience for 10 joins, but is that enough?

manual joining is the worst!

• slow

• tedious

• error-prone

• not fun!

• this discourages the analyst from asking the questions they mean
• maybe there is patience for 10 joins, but is that enough?

→ this encourages the analyst to ask questions they don’t really mean
• ask the easy questions that are only moderately helpful

also known as:
show me the files and reg values created by this user

also known as:
timeline the file modifications around 2017-01-10

our tools should represent artifacts
as a graph

proposition:

when we have an artifact of interest…

we must be able to ask for every place it’s referenced…

recursively.

StoryTime

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

content

attribute

timestamp
location

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

analyst evidence

chapter

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

host 1 host 2 host 3 host 4

analysis portal

host 1 host 2 host 3 host 4

analysis portal

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

Matching a TTP as a subGraph

Process File

Process

Reg

File:
File

Network

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

😈

🕴

🕴

😈

😈

😈

😈

😈🕴

🕴

🕴

🕴

😈

😈

😈

🕴

🕴

lessons learned

• many advanced analysts still want their grid
• maybe it’s the data density of a spreadsheet when hunting & consuming data?

• graph data structure shouldn’t necessarily imply a graph user interface

• its not a naïve splat of the graph to the screen; tailor graph presentation to guide user
• in ST, layout order has meaning, and node collapsing implies further context

• its about processing less data, not more

• (like we knew) data model matters: it both limits and enables operations

more detail

https://storytime.apps.fireeye.com/index.html

https://storytime.apps.fireeye.com/index.html

StoryTimerepresent artifacts in a graph

maintain the graph on each host-based agent

display the artifact graph via an intuitive user interface

merge host-scoped graphs into global-scoped graph

find attacker TTPs as patterns in the graph

partition the graph into relevant sub-graphs and suggest nodes

represent artifacts in a graph

content

attribute

timestamp
location

FilePath(C:\Windows\notepad.exe)

FileObservation(…notepad.exe, 2019-01-01…)
size: 14KB

FileObservation(…notepad.exe, 2020-02-02…)
size: 276KB

Entity:
a unique immutable, namable
thing/object/term/artifact.

typically quite simple, like a file system path.
instances of it may exist on multiple systems.

Observation:
metadata collected at a point in time.

usually has more properties.
often links many entities together.

entities and observations leads to a graph that is bipartite-ish

intel, like “is it malware”, propagates to entities.

this makes sense, because entities are usually global concepts.

but this makes fetching metadata about a thing more complex
• e.g. “As of yesterday, the hash of C:\windows\notepad.exe was XXX”

• maybe this forces us to be more correct

to merge graphs:

• entities coalesce together

• observations remain unconnected

outstanding issues

how to represent things with unclear/not-agreed-upon identity?

• e.g. processes (OS recycles PIDs, sysmon has its own GUIDs, etc.)
• We've seen PIDs reused within a single second on windows systems making

time+PID inaccurate when time is seconds granularity

how to find the right level of abstraction?

• want: a level that encourages reasoning

• but: schema dictates (restricts) how data can be accessed

maintain graph on host-based agents

analyst evidence problem:

in typical investigations, there is repeated fetch
of artifacts via high-latency process.

“given this alert for foo.exe, fetch the file”

“then list processes and find foo.exe”

“then see what files foo.exe wrote to”

“then collect those”

“then see if any are configured for persistence”

each step might take many minutes to complete



solution:

maintain artifact graph on each endpoint.

when there is an alert,

locate associated node in graph,

collect the subgraph of neighboring nodes,

return it in one roundtrip (or less).

→ system guesses what the analyst will need

chapter

this supported real investigations

data sources:

• endpoint agent events, e.g. file writes, process exec, net connection

• play at home: sysmon

nuances:

• how big of a graph do you maintain? which nodes to prune?
• Current system uses type-based aging (process nodes last longer than file or

registry nodes...and so on keeping more valuable artifacts for longer)

let’s say you see lateral movement…

• tired: query multiple hosts and stitch a central graph together

• wired: host to host graph traversal
• federate the “global” graph among many endpoints

• let them query each other, peer-to-peer

display artifact graph via an
intuitive user interface

graph relationship visualization

Alert is shown prominently with a shaded blue background -- a process event

Chapter contains context for how this suspect process came about
• lineage: what happened before alert

• along with: what happened after the alert.

64

Known good

Known bad

Unseen

65

disposition context

Dropped and Executed

Wrote to persistence Location

66

location context

network context
Resolve IP to organization

Context show network is benign

Internal IPs converted to hostnames

Context to show bad network connection is RED

67

Windows Internals context
Fading nodes into background that are “known”

• Help junior analysts learn common patterns without many years experience

• Filter out unnecessary analysis

68

• Color nodes based on user

• Identify session types created by user
• Interactive (local to machine)

• Remote Interactive (remote with UI)

• Service

• Select subgraph by node or session

69

user context

• Reduce displaying 100s of nodes in chapter down to most important

• Present user with most important information first, to make decision
• Let use decide when to dig in further

• Present summaries with limited information

• Can present data in grid view if desired

70

Collapsing Clutter

• Two MalwareGaurd detections in single chapter

• Able to see execution started from explorer.exe, aka user double-clicked

• Able to see executable was dropped and then executed

• Easy to see that screensaver is part of package

• Simple access to network, registry and file writes associated with chapter

71

merge host-scoped graphs into
global-scoped graph

graph is designed to merge well

• entities coalesce together, across host, investigation, organization
• every node has a URI derived from its primary properties

• enables many other things: caching, performance, etc.

• FilePath(C:\windows\notepad.exe) is a global concept

• observations don’t collide
• Primary properties include key + timestamp (+ maybe host)
• FileObservation(C:\windows\notepad.exe, 2020-01-01…, dc-hostname)

FilePath(C:\Windows\notepad.exe)

FileObservation(…notepad.exe, 2019-01-01…)
size: 14KB

FilePath(C:\Windows\notepad.exe)

FileObservation(…notepad.exe, 2020-02-02…)
size: 100KB

graph 1 graph 2

FilePath(C:\Windows\notepad.exe)

FileObservation(…notepad.exe, 2019-01-01…)
size: 14KB

FileObservation(…notepad.exe, 2020-02-02…)
size: 100KB

merged graphs

host 1 host 2 host 3 host 4

analysis portal

let’s say you see lateral movement…

• tired: query multiple hosts and stitch a central graph together

• wired: host to host graph traversal
• federate the “global” graph among many endpoints

• let them query each other, peer-to-peer

→ each endpoint becomes an autonomous agent that investigates the

rest of the enterprise

host 1 host 2 host 3 host 4

analysis portal

host 1 host 2 host 3 host 4

analysis portal

find attacker TTPs as patterns in graph

detect the graph sub-structure
created by a TTP rather the individual
TTP events

hypothesis:

what is a TTP?

threats follow a certain sequence of
events during the attack life-cycle –
the attacker fingerprint.

IOC

IOC

problem:

Example TTPs we create IOCs for today:

“attacker send attachment in email with exploit”

“malware executes”

“creates persistence in the registry Run Key”

“stages exfil files in Recycle Bin”

“exfils data using encrypted C2 over non-
standard ports”

IOC

IOC

IOC

solution:

Process:
outlook.exe

File:
resume.docx.exe

Process:
resume.docx.exe

Registry:
Run Key write

File:
resume.docx.exe

File:
resume.docx.exe

File:
C:\$Recycle...bad

DNS:
fun.domain.bad

Network:
A.10.1.155 : 1337

Detecting interconnected relationships

(aka subgraph) for:

Email Execution ->

Dropped File Execution ->

Registry Persistence Modification

File Writes

Network Connection

Matching a TTP as a subGraph

Process File

Process

Reg

File:
File

Network

Converting TTPs to subgraphs for matching!

data sources:

• Intel and IOCs

nuances:

• how big can subgraph be but still generically detect and/or locate
new unseen malicious activity?

achilles heel:

• how many FPs???

partition graph into sub-graphs
and suggest nodes

related artifacts form a connected
subgraph of the entire artifact graph

hypothesis:

intuition

• related things happen around the same time (temporal locality)
• generalized: similar values when the type is continuous

eg. timestamps, file size, entropy

• related things happen around the same place (spatial locality)
• generalized: equal values when the type is discrete

eg. current directory, user account, md5 hash

• if event A is related to event B, and event B is related to event C, then
event A is related to event C (transitive property)

so what?

• the artifact classification phase can be done by graph partitioning
• goal: find boundaries between the “relevant” and “not relevant” subgraphs

• here’s an effective technique:
1. start with a known-relevant artifact, and

2. recursively explore its neighbors,

3. until only non-relevant artifacts found.

• this is analogous to what a human does: they follow the thread

Threat Score Propagation

What we implemented first

Given suspicious node propagate score from suspicious node to
neighbor nodes in the graph

Enables weak signal detection when multiple weak signals within the
same neighborhood propagate scores to meet a given threshold for
detection

Tested with PageRank and HITS algorithms

th
ey

 f
o

llo
w

 t
h

e
th

re
ad

😈

😈

😈

😈

😈

😈

😈

😈

😈

😈

😈🕴

🕴

😈

😈

😈

😈

😈🕴

🕴

🕴

🕴

😈

😈

😈

😈

😈🕴

🕴

🕴

🕴

😈

😈

😈

🕴

🕴

algorithmic considerations

supernodes (nodes with many edges)
• e.g. every process loads kernel32.dll

• therefore, naïve N-degree traversal quickly explodes

• potential mitigation: weight or threshold nodes by degree

• nicely intuitive: items in a smaller directory are probably more closely related

works: swarm algorithm that randomly walks the neighborhood
• output: the nodes (and their weights) most related to the input set

• interpretation: artifacts that might be relevant to a report

lessons learned

lessons learned

• many advanced analysts still want their grid
• maybe it’s the data density of a spreadsheet when hunting & consuming data?

• graph data structure shouldn’t necessarily imply a graph user interface

• its not a naïve splat of the graph to the screen; tailor graph presentation to guide user
• in ST, layout order has meaning, and node collapsing implies further context

• its about processing less data, not more

• (like we knew) data model matters: it both limits and enables operations

